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Abstract

The best way of finding a hidden target is a general question which concerns many fields of

natural and social sciences. It is of vital importance for foraging animals. It has been observed

that many species adopt an intermittent behaviour, alternating phases of intensive search and

slow displacement, with phases of fast motion for exploring new regions. Here we present an

overview of a simple stochastic model which shows that scaling laws should be valid, relating

the average durations of these phases. These laws and other results are in good agreement with

available experimental data on a wide class of foraging animals.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many problems in natural sciences can be modelled as the search of a target by a
mobile particle or predator [1]. The search ends when the particle reaches its target,
which can be either destroyed or modified, according to the example treated. Thus, it
is often of great importance to minimize the time needed to find a randomly hidden
see front matter r 2005 Elsevier B.V. All rights reserved.
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target [2,3]. This very general question has been addressed in various articles [2,4–7]
in the case of foraging animals, which spend great part of the time looking for small
or hidden preys, and must optimize their strategy. In fact, experimental observations
show that a great variety of such animals adopt an intermittent behaviour,
alternating phases of active search and slow displacement with phases of fast motion.
We summarize a recent, stochastic model [7] which shows that such an intermittent
strategy allows minimizing the average time needed to find a prey. Its solution leads
to scaling laws between the average durations of the two phases, which are in good
agreement with available experimental data. Furthermore, it reveals the importance
of a characteristic time related to these durations, which can be estimated from the
observations.
2. Search strategies of foraging predators

As mentioned previously, studies of foraging behaviour showed that many
animals use an intermittent strategy, or saltatory behaviour [8–10], successively
displaying phases of intensive search with a slow displacement, focusing attention on
prey detection, and phases of fast motion, which degrade the perception abilities but
allow to visit unexplored regions. This strategy can be understood when the preys are
hidden and sparsely distributed. Examples can be found in very different species,
such as birds (ground-foraging species feeding on insects or seeds), fishes (goldfish,
bluegill sunfish), lizards or insects (wingless phorid flies). A similar intermittent
behaviour can also be observed on humans searching for specific letters sequence in a
text. Furthermore, it has been found that (i) no significant displacements occur
during the scanning phase; (ii) the velocity is almost constant during the fast
displacement; (iii) the angle between the velocities before and after a search phase
(turning angle) is usually small: the animal remembers its previous direction; and
(iv) the durations of the two phases vary widely, depending on the species. These
durations were measured, but the observations received no complete, qualitative
interpretation [9].
3. Model

We now incorporate these characteristics in the following simplified model:
Movement: Since the turning angle between different phases is usually small,

we assume that the predator follows a one-dimensional motion including two
phases:
�
 The search phase 1 is modelled as a diffusive movement. In fact, the stimuli
emitted by hidden targets are very weak; the predator may have to scan the same
location several times before detecting the prey: this process may be represented
by a Brownian motion. The time needed to discover the prey is in practice
identical to the first passage time at this point.
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�
 The motion phase 2 is a ballistic motion at constant absolute velocity v. During
this phase, the predator cannot discover a prey because of its reduced censorial
abilities.
�
 The duration of each phase i is an exponential stochastic time Ti:
PðTi4tÞ ¼ expð�f itÞ.

Preys: The preys are supposed to be uniformly distributed along the trajectory of
the predator.

Representation: the predator is represented by a point P moving on a straight line
ðOxÞ between reflecting points at �L=2 and L=2. A unique prey is located at x ¼ 0:
the images of 0 simulate regularly spaced preys with density 1=L. During phase 1, P

performs a diffusive movement with diffusion coefficient D. The predator discovers
the prey at its first passage time at 0 during phase 1. During phase 2, P performs a
ballistic motion with velocity v or �v, which can only change when P reaches the
reflecting points �L=2 or L=2. We consider that the prey P can be in four distinct
internal states i:
�
 State 1 (resp. 2) corresponds to a diffusive motion which can only switch to a
ballistic motion with velocity þv (resp. �v).
�
 State 3 (resp. 4) corresponds to a ballistic motion with velocity þv (resp. �v).

Let tðx; iÞ be the time necessary for finding the prey (first arrival time to 0)
when P starts from position x and state i. These first passage times satisfy the
equations [11]

D
q2tðx; 1Þ
qx2

þ f 1½tðx; 3Þ � tðx; 1Þ� ¼ �1 ,

D
q2tðx; 2Þ
qx2

þ f 1½tðx; 4Þ � tðx; 2Þ� ¼ �1 ,

v
qtðx; 3Þ

qx
þ f 2½tðx; 1Þ � tðx; 3Þ� ¼ �1 ,

�v
qtðx; 4Þ

qx
þ f 2½tðx; 2Þ � tðx; 4Þ� ¼ �1 . (1)

4. Results

These equations can be solved with the relevant boundary conditions. Then, the
solutions are averaged on uniform distribution of the initial position and initial
diffusive state. In the low target density limit, defined by

Lb
v

f 2
;
D

f 1
;
f 2D

f 1v
, (2)
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it is found that the average search time S (mean first arrival time at 0) is

S ¼
L

2
ffiffiffiffi
D

p
1

f 1
þ
1

f 2

� �
tf 22 þ 2f 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tf 22 þ 4f 1

q (3)

with t ¼ D=v2. The L dependency of S shows that the intermittent behaviour is much
more efficient than a mere diffusion, which would imply an L2 dependence.

Minimization of the search time: We now study the conditions for minimizing the
search time. It is easily found that there is no global minimum of the mean search
time S for finite values of f 1 and f 2. Nevertheless, as focusing and analysing the
information received by sensory organs requires a minimum time, we assume that
f 1 has a maximum value f 1max, depending on the species considered. Then S is
minimum when

f 1 ¼ f 1max ,

f 1f
5
2 þ

6

t
f 21f

3
2 �

8

t2
f 41 ¼ 0 . (4)

From these results it can be shown that:
�
 If f 1max51=t, the search time is minimal when frequencies are such that
f 1 ¼ f 1max and

f 2 

4

3t

� �1=3
f
2=3
1 . (5)

In this regime S (‘‘search’’), f 1of 2: the predator spends more time searching
than moving.
�
 If f 1maxb1=t, the minimal frequencies are such that f 1 ¼ f 1max and

f 2 

2
ffiffiffi
2

p

t

 !1=3

f
3=5
1 . (6)

In this regime M (‘‘move’’), f 14f 2: the predator spends more time moving than
searching.

5. Comparison with experimental data

Experimental data are available [2,3,8] and provide the average durations (and
thus frequencies f 1 and f 2) of search and motion phases for various species such as
fishes, birds and lizards exhibiting a saltatory search behaviour. Then, the previous
minimizing relation allows the calculation of the characteristic time t from these
experimental data. The results are reported as a histogram indicating the proportion
of species corresponding to different values of t (see Fig. 1).
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Fig. 1. Histogram of LogðtÞ: proportions of species corresponding to typical values of t.
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Bimodal distribution: Quite unexpectedly, this distribution is bimodal, with one
minimum around 0.1 s and a second one around 25 s, the fluctuations in logðtÞ being
small (of order 1). The first peak (t�0:1 s) corresponds to foragers in regime S,
which spend more time searching than moving. The second peak (t�25 s)
corresponds to foragers in regimeM, which spend more time moving than searching.

Correlation of frequencies: The plot of the frequencies f 1 and f 2 for each of the
previous classes S and M shows that both sets are strongly correlated. Their linear
regression gives slopes in agreement with theoretical predictions: for animals
belonging to classM, the experimental slope is 0:7� 0:1 (theoretical value: 3=5); for
animals belonging to class S, the experimental slope is 0:6� 0:1 (theoretical value:
2=3), both with a correlation coefficient r�0:9. Thus, taking into account the limited
accuracy of the data, our theoretical results satisfactorily agree with experimental
observations.
6. Conclusions

The experimental data seem to confirm the validity of our hypothesis, mainly that
the search phase is adequately represented by a diffusion, and that each species tends
to optimize its strategy by minimizing its search time. We have seen that this
minimization allows defining two classes of foraging animals: animals which spend
more time searching than moving, and animals which, more surprisingly, spend more
time moving than searching. In each class, scaling laws relate the average durations
of each phase, or the corresponding frequencies. These results are in good agreement
with the available experimental data.
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Our model could be applied to a large variety of search problems in natural
sciences, as well as in social sciences and economics, provided that the targets are
hidden, and the evolution of the system can be represented as a one-dimensional
motion with alternating diffusion and ballistic phases. Then, if minimizing the search
time is relevant, scaling laws should relate the phase durations. Clearly, many
complex factors are neglected in such oversimplified models, and they can have
important roles. In particular, it would be interesting to consider n-dimensional
examples, as well as extended classes of motion, or non-exponential waiting times.
Nevertheless, it appears that such factors do not strongly affect the validity of our
conclusions in the prey–predator case studied here.
In this case, minimizing the search time leads to the definition of a characteristic

time t which can be computed as a function of the relaxation frequencies of the
phases and is estimated from experimental data. It is remarkable that it is
approximately common to all animals in the same class, although they can belong to
very different species. No obvious explanation exists for this fact, which seems
specific of the search strategy of foraging animals, and could be of importance. Only
biologists can discuss it and consider its possible interpretations.
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