
Activité 1 – Mesure de l'intensité du courant

1) Expérience:

Réalise un circuit en boucle simple comportant une pile, un interrupteur et une lampe.

Pour mesurer l'intensité du courant, on branche un ampèremètre en série : le courant rentre par sa borne A et sort par sa borne COM.

Utilisez la fiche « ampèremètre » expliquant le fonctionnement d'un multimètre en mode « ampèremètre » pour mesurer l'intensité d'un courant continu.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Quel est le symbole normalisé d'un ampèremètre ?

Q2. Schématiser le circuit électrique avec l'ampèremètre.

Q3.Quel est l'unité d'intensité ?
Q4. Que vaut l'intensité du courant lorsque l'interrupteur est ouvert ?
Q5.Que vaut l'intensité du courant lorsque l'interrupteur est fermé ?
Q6. Ajouter une deuxième lampe en série puis schématiser le circuit complet de la mesure et mesurer à nouveau l'intensité dans la lampe précédente (interrupteur fermé).
Q1.Que pouvez-vous conclure ?
Dans un circuit série, plus on ajoute de dipôles récepteurs,

Activité 3 – Intensité du courant dans un circuit en dérivation

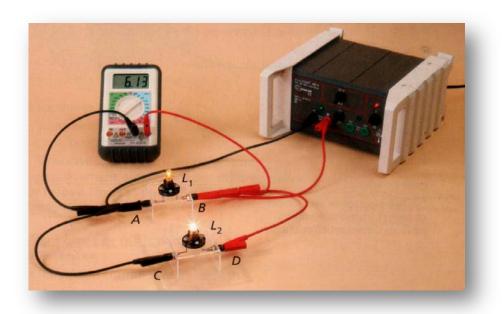
1) Expérience:

Réalisez un circuit avec un générateur de courant continu et 2 lampes L₁ et L₂ en dérivation.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Schématisez le circuit électrique. On note L_1 et L_2 les deux lampes, sachant que L_1 est celle la plus proche du générateur.


	principale. Schématiser le circuit électrique avec l'ampèremètre. Que vaut l'intensité du courant I ?
	Placez l'ampèremètre sur chaque branche dérivée. Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que valent les intensités du courant I_1 dans la lampe L_1 , et I_2 dans la lampe L_2 ?
4.	Que pouvez-vous conclure de l'expérience ?

Q2. Repérez le sens du courant dans le circuit et placer l'ampèremètre sur la branche

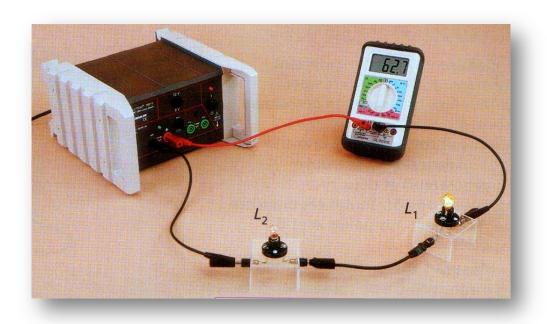
<u>Activité 6 – Tension électrique</u> <u>dans un circuit en dérivation</u>

1) Expérience:

Réalise un circuit avec un générateur de courant continu et deux lampes L_1 et L_2 en dérivation. On note A et B les bornes de la lampe L_1 , et C et D les bornes de la lampe L_2 .

2) Questions:

Placer le voltmètre à diverses positions dans le circuit et répondez aux questions.


Q1. Schématisez le circuit électrique, sachant que la lampe L_1 est celle la plus proche du générateur.

Q2.	Placer le voltmètre aux bornes de la lampe L_1 (à placer aussi sur le schéma précédent). Que vaut la tension U_1 aux bornes de la lampe L_1 ?				
Q3.	Placer le voltmètre aux bornes de la lampe L_2 (à placer aussi sur le schéma précédent). Que vaut la tension U_2 aux bornes de la lampe L_2 ?				
Q4.	Placer le voltmètre aux bornes du générateur (à placer aussi sur le schéma précédent). Que vaut la tension U_G aux bornes du générateur ?				
Q5.	Que pouvez-vous conclure de l'expérience ?				

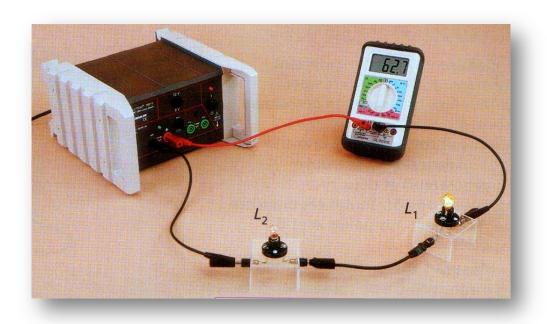
Activité 2 – Intensité du courant en circuit série

1) Expérience:

Réalise un circuit en boucle simple avec un générateur de courant continu et deux lampes L_1 et L_2 en série.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.


Q1. Schématisez le circuit électrique. On note L_1 et L_2 les deux lampes, sachant que L_1 est celle la plus proche de la borne + du générateur.

	Placez l'ampèremètre entre les deux lampes L_1 et L_2 . Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que vaut l'intensité du courant L_2 ?
	Placez l'ampèremètre après la lampe L_2 . Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que vaut l'intensité du courant I_3 ?
Հ5.	Que pouvez-vous conclure de l'expérience ?
16	Permuter les lampes et recommencer les mesures. Que remarque t-on ?
ζυ.	remater les lampes et recommencer les mesures. Que remarque t on :

Activité 2 – Intensité du courant en circuit série

1) Expérience:

Réalise un circuit en boucle simple avec un générateur de courant continu et deux lampes L_1 et L_2 en série.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Schématisez le circuit électrique. On note L_1 et L_2 les deux lampes, sachant que L_1 est celle la plus proche de la borne + du générateur.

	Placez l'ampèremètre entre les deux lampes L_1 et L_2 . Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que vaut l'intensité du courant L_2 ?
	Placez l'ampèremètre après la lampe L_2 . Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que vaut l'intensité du courant I_3 ?
Հ5.	Que pouvez-vous conclure de l'expérience ?
16	Permuter les lampes et recommencer les mesures. Que remarque t-on ?
ζυ.	remater les lampes et recommencer les mesures. Que remarque t on :

Activité 3 – Intensité du courant dans un circuit en dérivation

1) Expérience:

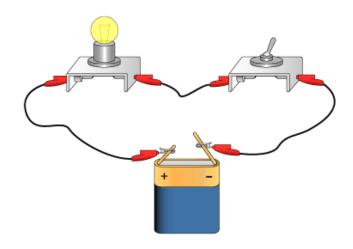
Réalisez un circuit avec un générateur de courant continu et 2 lampes L₁ et L₂ en dérivation.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Schématisez le circuit électrique. On note L_1 et L_2 les deux lampes, sachant que L_1 est celle la plus proche du générateur.

	principale. Schématiser le circuit électrique avec l'ampèremètre. Que vaut l'intensité du courant I ?
	Placez l'ampèremètre sur chaque branche dérivée. Placez sur le schéma précédent la nouvelle position de l'ampèremètre. Que valent les intensités du courant I_1 dans la lampe L_1 , et I_2 dans la lampe L_2 ?
4.	Que pouvez-vous conclure de l'expérience ?


Q2. Repérez le sens du courant dans le circuit et placer l'ampèremètre sur la branche

<u>Activité 4 – Mesure de la tension électrique</u>

1) Expérience:

Réalise un circuit en boucle simple comportant une pile, un interrupteur et une lampe.

Pour mesurer la tension électrique aux bornes d'un dipôle, on branche un voltmètre en dérivation aux bornes du dipôle : la borne V dirigée en direction de la borne (+) du générateur entraîne une mesure positive de la tension.

Utilisez la fiche « voltmètre » expliquant le fonctionnement d'un multimètre en mode « voltmètre » pour mesurer la tension électrique d'un courant continu.

2) Questions:

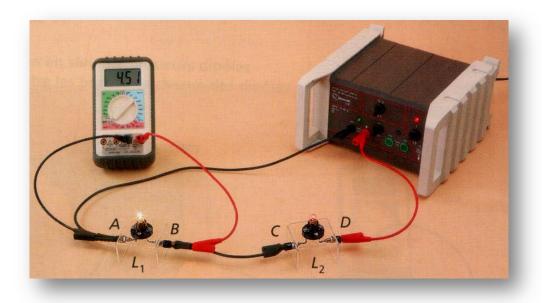
Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Quel est le symbole normalisé d'un voltmètre?

Q2. Schématiser le circuit électrique avec le voltmètre en dérivation aux bornes de la lampe.

Q3. Quei est i unite de tension electrique ?	
	•
Q4. Que vaut la tension aux bornes de chaque dipôle lorsque l'interrupteur est ouvert?	

Dipôles	Tension aux bornes des dipôles
Pile	
Lampe	
Interrupteur ouvert	
Fil de connexion	


Q5. Que vaut la tension aux bornes de chaque dipôle lorsque l'interrupteur est fermé?

Dipôles	Tension aux bornes des dipôles
Pile	
Lampe	
Interrupteur fermé	
Fil de connexion	

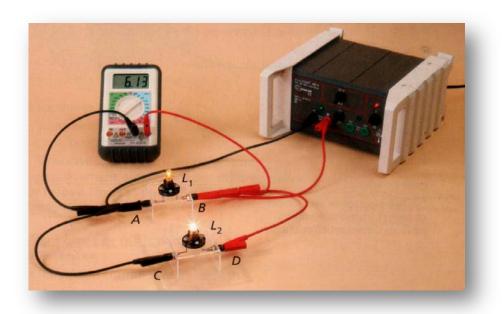
Activité 5 – Tension électrique en circuit série

1) Expérience:

Réalise un circuit en boucle simple avec un générateur de courant continu et deux lampes L_1 et L_2 . On note A et B les bornes de la lampe L_1 , et C et D les bornes de la lampe L_2 .

2) Questions:

Placer le voltmètre à diverses positions dans le circuit et répondez aux questions.


Q1. Schématisez le circuit électrique, sachant que la lampe L_1 est celle la plus proche de la borne + du générateur.

Q2. Placer le voltmetre aux bornes de la lampe L_1 (a placer aussi sur le schema precedent). Que vaut la tension U_1 aux bornes de la lampe L_1 ?
Q3. Placer le voltmètre aux bornes de la lampe L_2 (à placer aussi sur le schéma précédent).
Que vaut la tension U ₂ aux bornes de la lampe L ₂ ?
Q4. Placer le voltmètre aux bornes du générateur (à placer aussi sur le schéma précédent). Que vaut la tension U _G aux bornes du générateur ?
Q5.Que pouvez-vous conclure de l'expérience ?

<u>Activité 6 – Tension électrique</u> <u>dans un circuit en dérivation</u>

1) Expérience:

Réalise un circuit avec un générateur de courant continu et deux lampes L_1 et L_2 en dérivation. On note A et B les bornes de la lampe L_1 , et C et D les bornes de la lampe L_2 .

2) Questions:

Placer le voltmètre à diverses positions dans le circuit et répondez aux questions.

Q1. Schématisez le circuit électrique, sachant que la lampe L_1 est celle la plus proche du générateur.

Q2. Placer le voltmètre aux bornes de la lampe L_1 (à placer aussi sur le schéma précédent). Que vaut la tension U_1 aux bornes de la lampe L_1 ?						
Q3. Placer le voltmètre aux bornes de la lampe L_2 (à placer aussi sur le schéma précé Que vaut la tension U_2 aux bornes de la lampe L_2 ?	edent).					
Q4. Placer le voltmètre aux bornes du générateur (à placer aussi sur le schéma précé Que vaut la tension U_G aux bornes du générateur ?	edent).					
Q5. Que pouvez-vous conclure de l'expérience ?						

Activité 7 – Utilisation d'une résistance dans un circuit

Compétence(s) requise(s):

- Définition et propriétés de l'intensité du courant et de la tension électrique.
- Circuits en série et en dérivation.
- Loi d'additivité et d'unicité de chacune des grandeurs électriques : tension et intensité.

Objectif(s):

- Comprendre comment calculer ou mesurer une résistance.
- Comprendre l'influence d'une résistance sur le fonctionnement d'un circuit électrique.

1) Mesure d'une résistance

L'ohmmètre est un appareil qui permet de mesurer des valeurs de « résistance ».

Tu désires mesurer une valeur de « *résistance* ». Pour cela, **suis** ces 3 étapes :

- 1. Place d'abord le sélecteur du multimètre dans la zone Ω sur le plus grand calibre (ex : 20 M Ω).
- 2. Relie deux fils de connexion aux bornes Ω et COM du multimètre.

Branche le multimètre aux bornes du dipôle dont tu désires connaître la valeur de « *résistance* », comme indiqué sur la photo ci-contre.

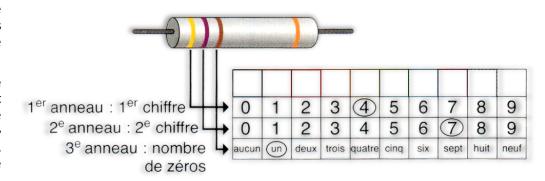
3. Enfin, **choisis** le calibre le mieux adapté pour la mesure, c'est-àdire dont l'indication est immédiatement supérieure à la valeur affichée. **Relève** la mesure en précisant les unités.

NB: Lors de la mesure de la tension électrique, on arrondit le dernier chiffre de l'affichage qui n'est pas significatif.

Q1. Quel est le symbole normalisé d'un ohmmètre?

ŲΖ	. Quei est i unite d	ie ia « resisturice	», notee k :			

Q3. Mesure les valeurs de plusieurs « résistances » R données par l'enseignant et complète le **tableau 1** ci-dessous.


Symboles avec les anneaux de couleurs		
Valeurs R mesurées		
Valeurs R calculées		

2) Calcul d'une résistance

Sur la figure de la page suivante, un code de couleurs permet d'identifier la valeur d'une « résistance » grâce à ces trois anneaux de couleurs.

M. HEURTEBISE 1/2

- Q4. Complète avec l'aide de l'enseignant les couleurs du code de couleurs.
- Q5. Complète ensuite le tableau 1, en donnant la valeur théorique des « résistances » que tu as mesurées, en utilisant le code des couleurs.

3) Utilisation d'une « résistance » dans un circuit

Réalise le circuit en série contenant un générateur de courant continu (ou une pile), une lampe et un ampèremètre. **Note** la valeur de l'intensité *I* du courant.

Ajoute en série dans le circuit une des résistances du tableau 1. Note la nouvelle valeur de l'intensité l_1 .

Remplace la résistance par une autre des résistances du tableau 1. **Note** la nouvelle valeur de l'intensité I_2 .

Continue les expériences avec toutes les résistances du tableau 1.

Q6. Schématise le circuit en série, avec une résistance insérée dans le circuit.

Q7. Complète le **tableau 2** ci-dessous en donnant les valeurs des intensités I, I₁, ..., I₄ en fonction des valeurs des résistances insérées dans le circuit en série.

Valeurs de « <i>résis-tances</i> » <i>R</i> mesurées	sans résistance, soit : $R = 0 \Omega$		
Valeurs de l'intensité			
I dans le circuit			

\sim	Complète	I - 4 4 -	<u> </u>
ı ıx	i amniata	ΙΔ ΤΔΥΤΔ	2 Trails

L'éclat de la lampe et l'intensité du courant	lorsque l'on branche une « <i>résistance</i> » en
avec la lampe. Cette	est d'autant plus importante que la valeur de la « résistance » est plus
de la « <i>r</i>	ésistance » n'a pas d'influence sur l'intensité du courant.

4) D'autres objets ont-ils une résistance?

Q9. Complète le texte à trous.

Les « résistances chauffantes	» et les filaments de lampes,	qui sont de	(c'est-à-dire qu
	urant) ont des résistances de qu	•	, ,
La résistance du corps humain	(.) est de l'ordre de 2 kΩ si la peau e	est
et de 5 k Ω si la peau est			
Avec un objet	(c'est-à-dire qui	le courant), l'oh	ımmètre indique « 1. »
quel que soit le calibre : la vale	ur de « résistance » d'un isolant	est très	

M. HEURTEBISE 2/2

Activité 8 - La loi d'Ohm

Compétence(s) requise(s) :

- Définition et propriétés de l'intensité du courant et de la tension électrique.
- Circuits en série et en dérivation.
- Loi d'additivité et d'unicité de chacune des grandeurs électriques : tension et intensité.
- Calcul et mesure d'une résistance.
- Influence d'une résistance sur le fonctionnement d'un circuit électrique.

Objectif(s):

- Établir la loi d'Ohm, relation entre l'intensité du courant dans une résistance et la tension à ses bornes.
- Application de la loi d'Ohm pour calculer la valeur d'une résistance.

1) Tracé de la caractéristique d'un dipôle

Réalise le circuit (photo A) comportant une résistance et un générateur de tension réglable.

Place un ampèremètre pour mesurer le courant qui traverse la résistance.

Place un voltmètre pour mesurer la tension aux bornes de la résistance.

Fais varier la tension du générateur et **relève** les valeurs de chacun des deux multimètres..

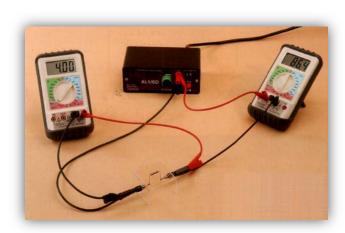


Photo A – Circuit permettant de tracer la caractéristique d'un dipôle.

Q1. Complète le tableau ci-dessous en faisant varier la tension du générateur.

Tension U (V)					
Intensité I (mA)					

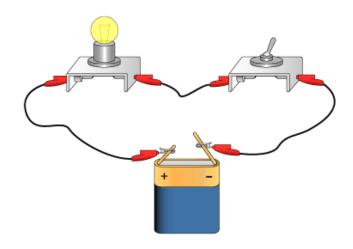
Q2. Trace la caractéristique représentant la tension U (en ordonnées) en fonction de l'intensité I (en abscisses).

M. HEURTEBISE 1/2

I (mA)

D.E.L.

Q3.	COII	ripiete le texte a trous sulvant.
	On con con	le graphique de la question Q2, les points correspondant aux couples (I, U) sont
2)	<u>Ap</u>	plication de la loi d'Ohm pour calculer la valeur d'une résistance
	_	de fabriquer un témoin lumineux avec une lampe (6 V ; 100 mA), alimenté par un générateur de tension de 12 V. Pour ampe fonctionne sous une tension et une intensité nominales, on va lui associer, en série, un dipôle ohmique.
Q4.	Sch	ématise le circuit électrique en série, composé de la lampe, du générateur et d'un dipôle ohmique.
Q5.	Calo	cul de la valeur du dipôle ohmique de sorte à ce que la lampe soit adaptée au circuit.
	a.	Quelle doit-être la tension U_R aux bornes de la « $r\acute{e}sistance$ » ?
	b.	Quelle doit-être l'intensité du courant I_R dans la « r ésistance » ?
	C.	En déduire la valeur <i>R</i> de la « <i>résistance</i> ».
Q6.	Plac	oisis un des dipôles ohmiques que tu possèdes, dont la valeur est la plus proche de la valeur R que tu viens de calculer. De un ampèremètre et un voltmètre pour mesurer la tension U'_R aux bornes de la « résistance » et l'intensité I'_R que rant qui la traverse.
	a.	Quelle est la tension U'_R mesurée aux bornes de la « résistance » ? Compare-la avec la valeur de la question Q5.a.
	b.	Quelle est l'intensité du courant I'_R mesurée dans la « résistance » ? Compare-la avec la valeur de la question Q5.b.
NB	: Le ¡	principe de cette expérience est très utilisé lorsque l'on veut placer une résistance de protection en série avec une


M. HEURTEBISE 2/2

<u>Activité 4 – Mesure de la tension électrique</u>

1) Expérience:

Réalise un circuit en boucle simple comportant une pile, un interrupteur et une lampe.

Pour mesurer la tension électrique aux bornes d'un dipôle, on branche un voltmètre en dérivation aux bornes du dipôle : la borne V dirigée en direction de la borne (+) du générateur entraîne une mesure positive de la tension.

Utilisez la fiche « voltmètre » expliquant le fonctionnement d'un multimètre en mode « voltmètre » pour mesurer la tension électrique d'un courant continu.

2) Questions:

Vous répondrez aux questions suivantes à l'aide de l'expérience précédente.

Q1. Quel est le symbole normalisé d'un voltmètre?

Q2. Schématiser le circuit électrique avec le voltmètre en dérivation aux bornes de la lampe.

Q3. Quei est i unite de tension electrique ?	
	•
Q4. Que vaut la tension aux bornes de chaque dipôle lorsque l'interrupteur est ouvert?	

Dipôles	Tension aux bornes des dipôles
Pile	
Lampe	
Interrupteur ouvert	
Fil de connexion	

Q5. Que vaut la tension aux bornes de chaque dipôle lorsque l'interrupteur est fermé?

Dipôles	Tension aux bornes des dipôles
Pile	
Lampe	
Interrupteur fermé	
Fil de connexion	

Activité 7 – Utilisation d'une résistance dans un circuit

Compétence(s) requise(s):

- Définition et propriétés de l'intensité du courant et de la tension électrique.
- Circuits en série et en dérivation.
- Loi d'additivité et d'unicité de chacune des grandeurs électriques : tension et intensité.

Objectif(s):

- Comprendre comment calculer ou mesurer une résistance.
- Comprendre l'influence d'une résistance sur le fonctionnement d'un circuit électrique.

1) Mesure d'une résistance

L'ohmmètre est un appareil qui permet de mesurer des valeurs de « résistance ».

Tu désires mesurer une valeur de « *résistance* ». Pour cela, **suis** ces 3 étapes :

- 1. Place d'abord le sélecteur du multimètre dans la zone Ω sur le plus grand calibre (ex : 20 M Ω).
- 2. Relie deux fils de connexion aux bornes Ω et COM du multimètre.

Branche le multimètre aux bornes du dipôle dont tu désires connaître la valeur de « *résistance* », comme indiqué sur la photo ci-contre.

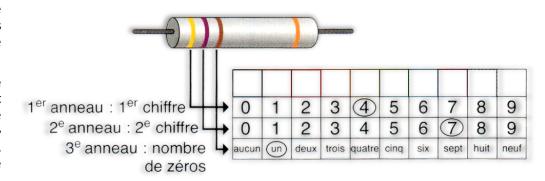
3. Enfin, **choisis** le calibre le mieux adapté pour la mesure, c'est-àdire dont l'indication est immédiatement supérieure à la valeur affichée. **Relève** la mesure en précisant les unités.

NB: Lors de la mesure de la tension électrique, on arrondit le dernier chiffre de l'affichage qui n'est pas significatif.

Q1. Quel est le symbole normalisé d'un ohmmètre?

ŲΖ	. Quei est i unite d	ie ia « resisturice	», notee k :			

Q3. Mesure les valeurs de plusieurs « résistances » R données par l'enseignant et complète le **tableau 1** ci-dessous.


Symboles avec les anneaux de couleurs		
Valeurs R mesurées		
Valeurs R calculées		

2) Calcul d'une résistance

Sur la figure de la page suivante, un code de couleurs permet d'identifier la valeur d'une « résistance » grâce à ces trois anneaux de couleurs.

M. HEURTEBISE 1/2

- Q4. Complète avec l'aide de l'enseignant les couleurs du code de couleurs.
- Q5. Complète ensuite le tableau 1, en donnant la valeur théorique des « résistances » que tu as mesurées, en utilisant le code des couleurs.

3) Utilisation d'une « résistance » dans un circuit

Réalise le circuit en série contenant un générateur de courant continu (ou une pile), une lampe et un ampèremètre. **Note** la valeur de l'intensité *I* du courant.

Ajoute en série dans le circuit une des résistances du tableau 1. Note la nouvelle valeur de l'intensité l_1 .

Remplace la résistance par une autre des résistances du tableau 1. **Note** la nouvelle valeur de l'intensité I_2 .

Continue les expériences avec toutes les résistances du tableau 1.

Q6. Schématise le circuit en série, avec une résistance insérée dans le circuit.

Q7. Complète le **tableau 2** ci-dessous en donnant les valeurs des intensités I, I₁, ..., I₄ en fonction des valeurs des résistances insérées dans le circuit en série.

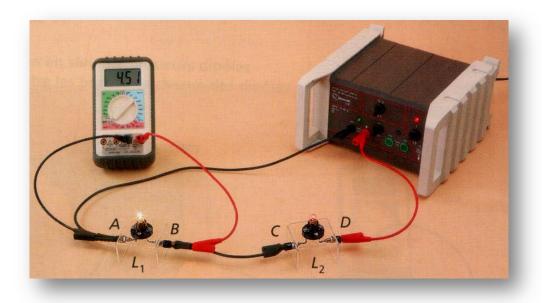
Valeurs de « <i>résis-tances</i> » <i>R</i> mesurées	sans résistance, soit : $R = 0 \Omega$		
Valeurs de l'intensité			
I dans le circuit			

\sim	Complète	I - 4 4 -	<u> </u>
ı ıx	i amniata	ΙΔ ΤΔΥΤΔ	2 Trails

L'éclat de la lampe et l'intensité du courant	lorsque l'on branche une « <i>résistance</i> » en
avec la lampe. Cette	est d'autant plus importante que la valeur de la « résistance » est plus
de la « <i>r</i>	ésistance » n'a pas d'influence sur l'intensité du courant.

4) D'autres objets ont-ils une résistance?

Q9. Complète le texte à trous.


Les « résistances chauffantes	» et les filaments de lampes,	qui sont de	(c'est-à-dire qu
	urant) ont des résistances de qu	•	, ,
La résistance du corps humain	(.) est de l'ordre de 2 kΩ si la peau e	est
et de 5 k Ω si la peau est			
Avec un objet	(c'est-à-dire qui	le courant), l'oh	ımmètre indique « 1. »
quel que soit le calibre : la vale	ur de « résistance » d'un isolant	est très	

M. HEURTEBISE 2/2

Activité 5 – Tension électrique en circuit série

1) Expérience:

Réalise un circuit en boucle simple avec un générateur de courant continu et deux lampes L_1 et L_2 . On note A et B les bornes de la lampe L_1 , et C et D les bornes de la lampe L_2 .

2) Questions:

Placer le voltmètre à diverses positions dans le circuit et répondez aux questions.

Q1. Schématisez le circuit électrique, sachant que la lampe L_1 est celle la plus proche de la borne + du générateur.

Q2. Placer le voltmetre aux bornes de la lampe L_1 (a placer aussi sur le schema precedent). Que vaut la tension U_1 aux bornes de la lampe L_1 ?
Q3. Placer le voltmètre aux bornes de la lampe L_2 (à placer aussi sur le schéma précédent).
Que vaut la tension U ₂ aux bornes de la lampe L ₂ ?
Q4. Placer le voltmètre aux bornes du générateur (à placer aussi sur le schéma précédent). Que vaut la tension U _G aux bornes du générateur ?
Q5.Que pouvez-vous conclure de l'expérience ?

Activité 8 - La loi d'Ohm

Compétence(s) requise(s) :

- Définition et propriétés de l'intensité du courant et de la tension électrique.
- Circuits en série et en dérivation.
- Loi d'additivité et d'unicité de chacune des grandeurs électriques : tension et intensité.
- Calcul et mesure d'une résistance.
- Influence d'une résistance sur le fonctionnement d'un circuit électrique.

Objectif(s):

- Établir la loi d'Ohm, relation entre l'intensité du courant dans une résistance et la tension à ses bornes.
- Application de la loi d'Ohm pour calculer la valeur d'une résistance.

1) Tracé de la caractéristique d'un dipôle

Réalise le circuit (photo A) comportant une résistance et un générateur de tension réglable.

Place un ampèremètre pour mesurer le courant qui traverse la résistance.

Place un voltmètre pour mesurer la tension aux bornes de la résistance.

Fais varier la tension du générateur et **relève** les valeurs de chacun des deux multimètres..

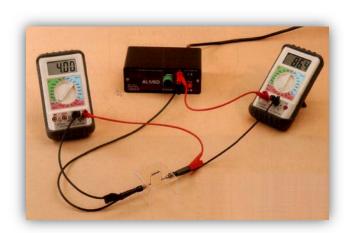


Photo A – Circuit permettant de tracer la caractéristique d'un dipôle.

Q1. Complète le tableau ci-dessous en faisant varier la tension du générateur.

Tension U (V)					
Intensité I (mA)					

Q2. Trace la caractéristique représentant la tension U (en ordonnées) en fonction de l'intensité I (en abscisses).

U (V)

I (mA)

Q3.	Complète le texte à trous suivant.	
	Sur le graphique de la question Q2, les points correspondant aux couples (I, U) sont	: U = R · I. droite ; on
	constitue la	
2)	Application de la loi d'Ohm pour calculer la valeur d'une résistance	
Il s'	git de fabriquer un témoin lumineux avec une lampe (6 V ; 100 mA), alimenté par un générateur de tension de a lampe fonctionne sous une tension et une intensité nominales, on va lui associer, en série, un dipôle ohmiqu	
Q4.	Schématise le circuit électrique en série, composé de la lampe, du générateur et d'un dipôle ohmique.	
Q5.	Calcul de la valeur du dipôle ohmique de sorte à ce que la lampe soit adaptée au circuit.	
	a. Quelle doit-être la tension U_R aux bornes de la « $r\'esistance$ » ?	
	b. Quelle doit-être l'intensité du courant I _R dans la « <i>résistance</i> » ?	
	c. En déduire la valeur <i>R</i> de la « <i>résistance</i> ».	
Q6.	Choisis un des dipôles ohmiques que tu possèdes, dont la valeur est la plus proche de la valeur R que tu viens de Place un ampèremètre et un voltmètre pour mesurer la tension U'_R aux bornes de la « <i>résistance</i> » et l'intens courant qui la traverse.	
	a. Quelle est la tension U'_R mesurée aux bornes de la « résistance » ? Compare-la avec la valeur de la questior	n Q5.a.
	b. Quelle est l'intensité du courant l' _R mesurée dans la « résistance » ? Compare-la avec la valeur de la questic	on Q5.b.

NB : Le principe de cette expérience est très utilisé lorsque l'on veut placer une résistance de protection en série avec une D.E.L.

Lumière blanche et lumières colorées

Con •	npétence(s) requise(s) : Les sources de lumières, prima La propagation rectiligne de la			lumière.				
Obj • •	i ectif(s) : Être capable de décomposer la Appréhender la notion de spec Comprendre le rôle d'un filtre d	tre d'une lumière b		•	ou d'un C	CD.		
Inte Plac Ren Puis	aire un écran blanc avec une lur erpose une fente et le réseau er ce un filtre vert contre la lampe nplace le filtre vert par un filtre s remplace le filtre vert par un f Qu'observes-tu sur l'écran lors	ntre la source de lui rouge. iltre bleu.					rés	seau
0.3						lampe	fente	
Q2.	Complète le spectre suivant et Couleurs du spectre	nomme les sept co	ouleurs q	ui le composen	t.			
	Nom des couleurs			- - -		***************************************		
Q3.	Que remarques-tu sur l'écran	lorsque tu utilises u	n filtre do	e couleur ?				
Q4.	Complète le spectre suivant, is	ssu de la décompos	ition de la	a lumière verte	/rouge/	bleue avec le	réseau.	
	lumière verte							
	lumière rouge lumière bleue							
Q5.	Que pourrais-tu utiliser pour d	écomposer la lumi	ère blanc	he ou les lumiè	res colo	rées ?		
Q6.	Complète le texte à trous.							
	Un, comme				e la lum	ière. Le	(d'une lumière

La lumière blanche est composée d'une multitude de lumières : son spectre est et

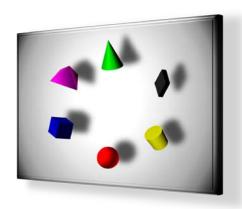
Un filtre vert, éclairé en lumière blanche, toutes les lumières colorées, sauf la lumière verte qu'il

...... Le spectre obtenu contient les principales couleurs de l'........

<u>Activité</u> <u>– Synthèses additives et soustractives</u>

Compétence(s) requise(s) :


- Les sources de lumières, primaires et secondaires.
- La propagation rectiligne de la lumière et les faisceaux de lumière.
- La décomposition de la lumière et la notion de spectre.
- Le rôle d'un filtre de couleur et la synthèse soustractive.


Objectif(s):

- Être capable de comprendre quelle couleur est diffusée ou absorbée par un objet coloré.
- Appréhender les notions de couleurs primaires et de couleurs secondaires.
- Comprendre la superposition de deux ou trois lumières primaires.
- Comprendre les notions de synthèse additive et de synthèse soustractive.

1) Synthèse soustractive

Place côte à côte des objets colorés (rouge, vert, bleu, jaune...) et un objet noir devant un écran blanc. Éclaire le tout avec une lumière blanche, puis avec des lumières colorées.

Q1. Complète le tableau suivant en donnant la couleur finale de l'objet, en fonction de sa couleur initiale et celle de la lumière qui l'éclaire :

Couleur de couleur l'objet de la lumière	 	 	 	

α	Ca	1246	10 +04+0	à trous.
OZ.	comp	ıeτe	ie texte	a trous.

Un objet blanc prend la couleur	r de la lumière qui l'éclaire : il	toutes les lumières colorées
Un objet noir	toutes les lumières colorées : il	de lumière, et reste noir.

Opt	ique – 4 ^{eme} – Chap. <u>– Lumières co</u>	biorees et couleur des objets		Activité - Couleur d'un objet
	lumière rouge, ou en lumière celle-ci ne contient pas	blanche, car cette dernière cor de lumière rouge. De m	ndition qu'il en reçoive. C'est ntient de la lumière rouge. Il pa nême, un filtre rouge, éc sauf la lumière qu	raît noir en lumière verte, car airé en lumière blanche,
	-	» de l'objet, tandi	ui l'éclaire. La couleur d'un obj s que la couleur d'un objet éo	
2)	Synthèse additive			
lum Rec lum Écla	ire simultanément un écran ière verte. ommence avec une lumière ro ière verte et une lumière bleue iire enfin simultanément l'écra	uge et une lumière bleue, puis e. n blanc avec les trois lumières	s avec une	
Q3.	Quelle est, dans chaque cas, la			
	Lumière rouge + lumière verte Lumière rouge + lumière bleue			
	· ·	j		
	Lumière rouge + lumière verte	+ lumière bleue :		
Q4.	Complète le tableau ci-dessou	s, en coloriant les cases avec d	les crayons de couleur.	
	Lumières su	iperposées	Lumière	obtenue
-	Lumières su nom de la couleur	rperposées couleur	Lumière nom de la couleur	obtenue couleur
- -				
-	nom de la couleur			
-	nom de la couleur verte			
-	nom de la couleur verte bleue			
-	nom de la couleur verte bleue bleue			
	nom de la couleur verte bleue bleue rouge			
	nom de la couleur verte bleue bleue rouge rouge			
	nom de la couleur verte bleue bleue rouge rouge verte			
	nom de la couleur verte bleue bleue rouge rouge verte rouge			
Q5.	nom de la couleur verte bleue bleue rouge rouge verte rouge bleue bleue verte	couleur couleur		couleur
Q5.	nom de la couleur verte bleue bleue rouge rouge verte rouge bleue verte Mets en rotation un disque o	couleur couleur	nom de la couleur	couleur
	nom de la couleur verte bleue bleue rouge rouge verte rouge bleue verte Mets en rotation un disque o	couleur couleur	nom de la couleur	couleur

La superposition des trois lumières colorées rouge, verte et bleue donne les couleurs et

La couleur peut être obtenue par superposition des trois lumières colorées rouge, verte et bleue.

....., qui sont appelées couleurs

<u>Activité</u> <u>– Les lentilles : définition et propriétés</u>

Compétence(s) requise(s) :

- Propagation rectiligne de la lumière.
- Faisceaux de rayons parallèles / convergents / divergents de lumière.

Objectif(s):

- Savoir faire la différence entre une lentille convergente et une lentille divergente.
- Être capable de déterminer les caractéristiques (foyer et distance focale) d'une lentille convergente.
- Comprendre à quoi correspond le foyer d'une lentille convergente.

1) Les lentilles convergentes et divergentes

Au toucher

Prends diverses lentilles (voir figure 1) entre tes doigts. Classe-les en deux catégories A et B en comparant, pour chaque lentille, les épaisseurs au centre et au bord.

Par déviation des faisceaux de rayons parallèles de lumière

Prends une lentille de chaque catégorie et éclaire-la avec des faisceaux de rayons parallèles de lumière, comme sur la figure 2.

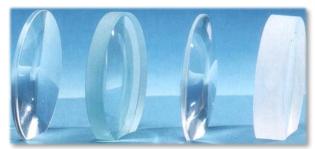


Figure 1 - Quelques lentilles

Par observation d'un texte

Pose ces lentilles sur un texte.

Éloigne-les du texte de quelques centimètres comme sur la figure 3.

Figure 3 – Observation d'un texte au travers d'une lentille.

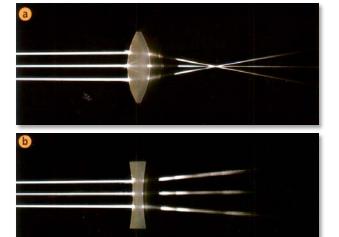


Figure 2 – Faisceaux de rayons parallèles de lumières arrivant sur deux lentilles de types différents.

Q1. **Complète** le tableau ci-dessous en fonction de tes observations.

Lentilles	Nom	Formes	Épaisseur	Déviation de faisceaux à la sortie de la lentille	Observation d'un texte
catégorie A					

Lentilles	Nom	Formes	Épaisseur	Déviation de faisceaux à la sortie de la lentille	Observation d'un texte
catégorie B					

2) Foyer et distance focale

Dispose une feuille de papier face à une lumière éloignée (exemple : le soleil ou une lampe).

Place une lentille convergente de façon à obtenir un point très lumineux sur la feuille, comme sur la figure 4.

Mesure la distance f entre ce point et la lentille.

Retourne la lentille convergente et recommence l'expérience.

Recommence l'expérience avec une autre lentille convergente.

Figure 4 – Une lentille convergente faire converger les rayons du Soleil en un point

Q2.	La distance mesurée dépend-elle de la lentille utilisée ?
Q3.	La distance mesurée dépend-elle de l'orientation de la lentille convergente ?
Q4.	Complète le texte à trous.
	Une lentille convergente fait les rayons du Soleil en un point F appelée de la lentille En ce point, on peut la feuille de papier, car on y concentre l'énergie provenant du Soleil et traversan la lentille. La distance f entre la lentille et le foyer est appelée
	Une loupe est une lentille
Q5.	Fais le schéma de l'expérience et place sur la figure la distance f . On appelle F le point très lumineux.
	Axe

optique