DST: Physique-Chimie

NOM :
PRENOM:
Enseignement scientifique :

DUREE DE L'EPREUVE : 1 heure. — Sur 20 points — COEFFICIENT : 1

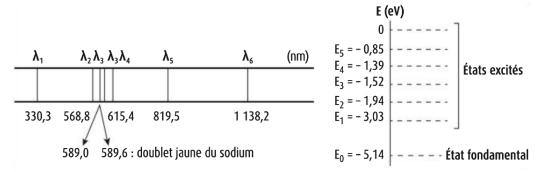
L'usage des calculatrices est <u>autorisé</u>.

Ce sujet comporte 3 exercices de PHYSIQUE-CHIMIE, présentés sur 4 pages numérotées de 1 à 4, y compris celle-ci. Les exercices sont indépendants. Si au bout de quelques minutes, vous ne parvenez pas à répondre à une question, passez à la suivante. Les exercices peuvent être traités séparément, le barème est donné à titre indicatif. Dans tous les calculs qui suivent, on attend à ce que soient donnés la formule littérale, le détail du calcul numérique et le résultat avec une unité et un nombre de chiffres significatifs correct en écriture scientifique. Et n'oubliez pas de faire des phrases!

- I. QCM
- II. Le sodium
- III. Etude expérimentale d'une cellule photovoltaïque

Année 2021-2022 M. Suet

Compétences		<u>@</u>	<u>~</u>	<u>S</u>
Restituer des connaissances				
Analyser	Justifier ou proposer un modèle			
S'approprier	Extraire des informations			
Réaliser	Manipuler les équations, Utiliser une calculatrice			
Valider	Exploiter des informations, Avoir un regard critique			
Communiquer	Utiliser un vocabulaire scientifique adapté, Présentation			
Etre autonome	Prendre des décisions			


 \Box I = U.R $\Box \ \ I = \frac{U}{R}$ \square R = U.I

Iteansei	Wampuier ies equations, ethiser the calculative		
Valider	Exploiter des informations, Avoir un regard critique		
Communiquer	Utiliser un vocabulaire scientifique adapté, Présentation		
Etre autonome	Prendre des décisions		
Exercice 1 QCM			
Compétences : Restituer des connais			
Cocher la bonne réponse pour chact			
1/ L'induction électromagnétique, o			
□ La création d'un champ magr	nétique par un courant électrique qui parcourt un fil.		
□ La création d'un courant élec	trique dans une bobine en rotation sur elle-même.		
□ La création d'un courant élec	trique dans une bobine par un aimant en mouvement par ra	pport à cette dern	nière.
2/ D'un point de vue énergétique, l	'induction électromagnétique est		
□ une conversion d'énergie élect	rique en énergie mécanique.		
□ une conversion d'énergie méca	anique en énergie électrique.		
□ une conversion d'énergie méca	anique en énergie thermique.		
3/ Le rendement d'un alternateur s	e calcule :		
\Box en divisant la vitesse de rotat	ion de l'alternateur par l'intensité du courant produit.		
\Box en multipliant la puissance éle	ectrique en sortie par la puissance mécanique en entrée.		
\Box en faisant le quotient de la pu	uissance électrique en sortie par la puissance mécanique en e	ntrée	
4/ Le rendement d'un alternateur is	ndustriel est de l'ordre de		
\square 30 %			
□ 60 %			
\square 95 $\%$			
5/ Parmi les matériaux ci-après, ide	entifiez celui qui n'est pas un semi-conducteur :		
□ germanium			
□ silicium			
□ cuivre			
5/ La lumière visible s'étend de :			
$\square~400~\mathrm{nm}$ à 800 nm			
\square 4 à 8 mm			
$\Box~0.4$ à 0.8 $\mu\mathrm{m}$			
7/ La bande interdite d'un semi-con	nducteur ou d'un isolant c'est		
□ la quantité minimale d'énergi	e à fournir pour que les éléments du matériau perdent leurs	électrons.	
□ la quantité d'énergie au-delà e	de laquelle le matériau risque de brûler.		
$\hfill\Box$ la quantité minimale à fourni	r pour que les électrons du matériau passent d'un état fonda	amental à un état	excité.
8/ Les électrons d'un semi-conducte	eur peuvent franchir la bande interdite		
□ quand ils sont mis en rotation	1.		
$\hfill\Box$ quand ils sont éclairés.			
$\hfill\Box$ quand ils sont placés à très ba	asse température.		
9/ La caractéristique électrique d'u	n dipôle de résistance R s'exprime sous la forme		

Exercice 2 Le sodium

Compétences: Restituer des connaissances, Analyser, S'approprier, Calculer

Voici le spectre d'émission d'une lampe à vapeur de sodium et le diagramme simplifié des niveaux d'énergie de l'atome de sodium.

Relation donnant la variation entre deux niveaux d'énergie en fonction de la longueur d'onde associée :

$$E = \frac{h \times c}{\lambda}$$

où λ est la longueur d'onde de chaque radiation et h est la constante de Planck et c la célérité de la lumière. **Données :** $h = 6,62 \times 10^{-34} \text{ J.s}, c = 3,00 \times 10^8 \text{ m.s}^{-1}$

1/ Rappeler le domaine de longueur du spectre du visible.

2/ Calculez, en J puis en eV, quelle énergie possède le photon dont l'émission correspond à la raie 589 nm (1 J = 6.24×10^{18} eV). Identifiez à quelle position dans le diagramme d'énergie correspond cette raie.

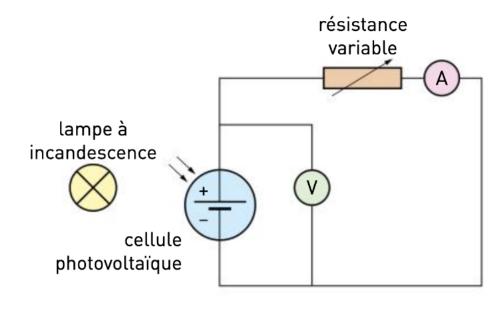
3/ Déterminez à quelle raie correspond la transition entre les niveaux E_2 et E_1 .

4/ Expliquer comment interpréter le spectre d'absorption du sodium.

Exercice 3 Etude expérimentale d'une cellule photovoltaïque

Compétences : Analyser, S'approprier, Calculer, Tracer un graphe

Un fabricant fournit les données suivantes pour une cellule photovoltaïque en silicium monocristallin utilisée pour l'habitat.


Pour un éclairement standard de 1000 W.m⁻²

Puissance maximale : $P_{max} = 5 \text{ W}$

Tension à vide (pour $I=0~\mathrm{A})$: $U_0=21~\mathrm{V}$

Intensité de court-circuit (pour U = 0 V) : $I_{cc} = 410 \text{ mA}$

Pour vérifier les informations indiquées, on réalise le montage expérimental représentée en dessous

On obtient les mesures suivantes

I (mA)	0,00	45,5	84,1	116	150	173	200	210	224
<i>U</i> (V)	20,8	19,9	18,8	17,5	15,8	13,5	7,5	4,4	0,061
P (mW)									

- 1/ Dans cette expérience, quel appareil permet de mesurer l'intensité du courant électrique?
- 2/ Dans cette expérience, quel appareil permet de mesurer la tension aux bornes de la cellule?
- 3/ Sur votre feuille, tracer la caractéristique I = f(U)
- 4/ Pour chaque mesure, calculer la puissance P.
- 5/ Comparer les données du fabricant et celles obtenues par l'expérience.
- **6/** Proposer une explication à ces différences.

Fin

DST: Physique-Chimie

NOM :
PRENOM:
T KENOW .
Enseignement scientifique :

DUREE DE L'EPREUVE : 1 heure. — Sur 20 points — COEFFICIENT : 1

L'usage des calculatrices est <u>autorisé</u>.

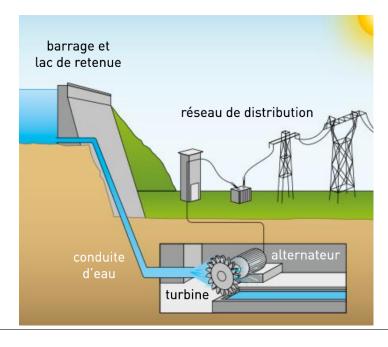
Ce sujet comporte 3 exercices de PHYSIQUE-CHIMIE, présentés sur 4 pages numérotées de 1 à 4, y compris celle-ci. Les exercices sont indépendants. Si au bout de quelques minutes, vous ne parvenez pas à répondre à une question, passez à la suivante. Les exercices peuvent être traités séparément, le barème est donné à titre indicatif. Dans tous les calculs qui suivent, on attend à ce que soient donnés la formule littérale, le détail du calcul numérique et le résultat avec une unité et un nombre de chiffres significatifs correct en écriture scientifique. Et n'oubliez pas de faire des phrases!

- I. QCM
- II. Barrage hydroélectrique
- III. Géothermie

Compétences		<u>@</u>	<u>~</u>	<u>8</u> (
Restituer des connaissances				
Analyser	Justifier ou proposer un modèle			
S'approprier	Extraire des informations			
Réaliser	Manipuler les équations, Utiliser une calculatrice			
Valider	Exploiter des informations, Avoir un regard critique			
Communiquer	Utiliser un vocabulaire scientifique adapté, Présentation			
Etre autonome	Prendre des décisions			

Etre autonome	Prendre des décisions	
Exercice 1 QCM		
Compétences : Restituer des connais		
Cocher la bonne réponse pour chacu	-	
·	possède une puissance de l'ordre de :	
□ 1 kW		
□ 1 MW		
□ 1 GW		
□ 1 TW		
2/ Une éolienne industriel peut prod	duire une puissance de l'ordre de :	
□ 1 kW		
□ 1 MW		
□ 1 GW		
□ 1 TW		
3/ L'énergie d'une centrale nucléaire	e est obtenue grâce à :	
□ la fusion nucléaire		
□ l'oxydation de l'uranium		
□ une machine thermique	227	
□ la désintégration de l'uranium		
4/ Une centrale nucléaire a besoin d	l'un circuit de refroidissement	
□ pour éviter la fusion du cœur		
□ pour ralentir la turbine		
□ pour refroidir l"alternateur		
□ pour que la machine thermiqu		
•	rmique, nucléaire ou dans une éolienne, l'électricité est produ	uite grâce à :
□ l'induction électromagnétique		
□ l'effet Joule		
□ l'effet photovoltaïque		
□ la conversion d'énergie chimiq		
•	ues n'implique pas d'énergie mécanique pour produire de l'é	lectricité?
□ éolienne		
□ photovoltaïque		
□ nucléaire		
\square au charbon		
7/ Les modes de production d'énerg		
□ n'ont aucun impact sur l'envir	ronnement.	

 $\square\,$ sont à l'origine d'émission de CO_2


 $\square\,$ affectent la biodiversité et le paysage

 $\square\,$ affectent le paysage mais pas la biodiversité

Exercice 2 Barrage hydroélectrique

Compétences: Restituer des connaissances, Analyser, S'approprier, Calculer

Les centrales hydroélectriques exploitent l'énergie mécanique accumulée par un important volume d'eau retenu par un barrage. L'association d'une turbine et d'un alternateur permet de convertir cette énergie en énergie électrique qui sera ensuite dirigée vers le réseau de distribution.

- 1/ Pour la turbine, représenter la chaîne énergétique et exprimer le rendement η_t de ce convertisseur.
- 2/ Pour l'alternateur, représenter la chaîne énergétique et exprimer le rendement η_a de ce convertisseur.
- 3/ En utilisant les réponses précédentes, exprimer le rendement global de la centrale hydroélectrique.
- 4/ Les turbines ont un rendement proche de 55% et les alternateurs de 75%. En déduire la valeur du rendement global d'une telle installation.

Exercice 3 Géothermie

Compétences : Analyser, S'approprier, Calculer, Tracer un graphe

La géothermie est basée sur l'exploitation de l'énergie thermique stockée dans le sous-sol. Cette énergie provient principalement de la désintégration des éléments radioactifs qui constituent la croûte terrestre et la dissipation de l'énergie primitive accumulée depuis la création de notre planète. A quelques centaines de mètres de profondeur, il est possible d'obtenir des températures élevées qui vont servir à produire de la vapeur d'eau et en fin de processus à obtenir de l'énergie électrique. Ainsi, la centrale géothermique de Bouillante en Guadeloupe génère une puissance de 15 MW, ce qui permet de couvrir 7 à 8 % de la consommation électrique de l'île.

- 1/ Représenter la chaîne énergétique d'une centrale géothermique.
- 2/ Quels avantages présente ce type d'installation par rapport à des centrales à combustion classique?

3/ On admet généralement qu'une tonne de pétrole peut fournir 10 GJ d'énergie électrique dans une centrale à combustion. Evaluer l'économie de pétrole réalisée sur une année par l'exploitation de la centrale de Bouillante.

Fin ———

DST: Physique-Chimie

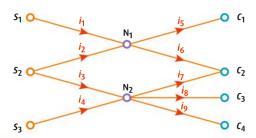
NOM :
PRENOM:
Enseignement scientifique :

DUREE DE L'EPREUVE : 1 heure. — Sur 20 points — COEFFICIENT : 1

L'usage des calculatrices est <u>autorisé</u>.

Ce sujet comporte 2 exercices de PHYSIQUE-CHIMIE, présentés sur 3 pages numérotées de 1 à 3, y compris celle-ci. Les exercices sont indépendants. Si au bout de quelques minutes, vous ne parvenez pas à répondre à une question, passez à la suivante. Les exercices peuvent être traités séparément, le barème est donné à titre indicatif. Dans tous les calculs qui suivent, on attend à ce que soient donnés la formule littérale, le détail du calcul numérique et le résultat avec une unité et un nombre de chiffres significatifs correct en écriture scientifique. Et n'oubliez pas de faire des phrases!

- I. QCM
- II. Modèle pour décrire un réseau électrique

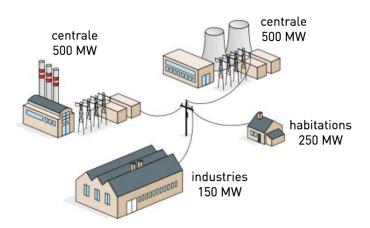

Compétences		<u>@</u>	<u>—</u>) <u>B</u>
Restituer des connaissances				
Analyser	Justifier ou proposer un modèle			
S'approprier	Extraire des informations			
Réaliser	Manipuler les équations, Utiliser une calculatrice			
Valider	Exploiter des informations, Avoir un regard critique			
Communiquer	Utiliser un vocabulaire scientifique adapté, Présentation			
Etre autonome	Prendre des décisions			

Exercice 1 QCM

Compétences : Restituer des connaissances

Cocher la ou les bonnes réponses pour chacune de ces questions.

- 1/ Dans chaque réseau sous tension constante, au niveau d'un nœud, on peut dire que :
 - \Box le courant sur chaque ligne doit être égal.
 - \square la somme des tensions des lignes sortantes est égale à la somme des tensions des lignes entrantes.
 - \square la somme des courants des lignes sortantes est égale à la somme des courants des lignes entrantes.
 - \Box la somme des puissances des lignes sortantes est égale à la somme des courants des lignes entrantes.
- 2/ Le matériau constitutif d'une ligne électrique est choisi de façon à
 - $\square\,$ ce que sa résistance électrique soit la plus faible possible.
 - \square ce que sa résistance électrique soit la plus haute possible.
 - \square ce que sa résistance mécanique soit la plus élevée possible.
 - □ ce qu'il s'intègre bien dans le paysage.
- 3/ Soit le réseau suivant :


- 3.1/ D'après la loi des nœuds, on peut écrire
- $\Box i_1 + i_2 = i_5 + i_6$
- \Box $i_1 + i_2 \geqslant i_5$
- $\Box i_3 + i_4 < i_7 + i_8 + i_9$
- \Box $i_3 = i_4$
- 3.2/ Les cibles consomment une intensité de courant telle que :
- \square $C_1 = i_5$
- \square $C_3 = S_2$
- $\Box C_2 = i_6 + i_7$
- \square $C_4 = i_4$
- 4/ Dans les réseaux simplifiés étudiés, on fait l'hypothèse que :
 - \square les courants sont tous identiques.
 - \square les tensions dans les lignes restent toutes identiques au cours du temps.
 - \square les puissances sont toutes identiques.
 - \Box les pertes sont toutes identiques.

- **5/** A puissance transportée constante, on préfère :
 - \square utiliser de la haute tension.
 - □ utiliser du haut courant dans les lignes, ce qui réduit la tension.
 - \Box utiliser des lignes à haute résistance pour réduire le courant.

Exercice 2 Modèle pour décrire un réseau électrique

Compétences : Analyser, S'approprier, Calculer

On considère le réseau électrique suivant :

1/

- 1.1/ Donner les contraintes électriques de ce réseau.
- 1.2/ Si l'électricité est transportée par des lignes haute tension à 63 000 V, quelle est la valeur de l'intensité totale qui doit arriver aux cibles destinatrices?
- 2/ Quelle est la grandeur électrique dont on cherche à minimiser la valeur? Expliquer.
- 3/ Modéliser le réseau électrique par un graphe orienté.
- **4/** Exprimer la fonction à minimiser sous la forme $f(I_1) = A \cdot I_1^2 + B \cdot (C I_1)^2 + D$.

Fin **=**